
DPBloomfilter: Securing Bloom Filters with Differential

Privacy

Yekun Ke∗ Yingyu Liang† Zhizhou Sha‡ Zhenmei Shi§ Zhao Song¶

Abstract

The Bloom filter is a simple yet space-efficient probabilistic data structure that supports
membership queries for dramatically large datasets. It is widely utilized and implemented
across various industrial scenarios, often handling massive datasets that include sensitive user
information necessitating privacy preservation. To address the challenge of maintaining privacy
within the Bloom filter, we have developed the DPBloomfilter. This innovation integrates the
classical differential privacy mechanism, specifically the Random Response technique, into the
Bloom filter, offering robust privacy guarantees under the same running complexity as the
standard Bloom filter. Through rigorous simulation experiments, we have demonstrated that
our DPBloomfilter algorithm maintains high utility while ensuring privacy protections. To the
best of our knowledge, this is the first work to provide differential privacy guarantees for the
Bloom filter for membership query problems.

∗ keyekun0628@gmail.com.
† yingyul@hku.hk. The University of Hong Kong. yliang@cs.wisc.edu. University of Wisconsin-Madison.
‡ shazz20@mails.tsinghua.edu.cn. Tsinghua University.
§ zhmeishi@cs.wisc.edu. University of Wisconsin-Madison.
¶ zsong@adobe.com. Adobe Research.

Contents

1 Introduction 2

2 Related Work 3
2.1 Bloom Filter . 3
2.2 Differential Privacy . 3
2.3 Privacy in Data Mining and Recommendation System 4

3 Preliminary 5
3.1 Notations . 5
3.2 Bloom Filter . 5
3.3 Differential Privacy . 5
3.4 Basic Composition of Differential Privacy . 6

4 Main Results 6
4.1 Privacy for DPBloomfilter . 6
4.2 Utility for DPBloomfilter . 8
4.3 Running Complexity of DPBloomfilter . 8

5 Proof for 1− δ Quantile 8
5.1 Definition . 9
5.2 Distribution of Y . 9
5.3 Distribution of Z conditioned on Y . 10
5.4 Distribution of W . 11

6 Privacy guarantees for one coordinate 13
6.1 Single bit is private . 13
6.2 Privacy guarantees for DPBloomfilter . 15

7 Utility analysis 16
7.1 Accuracy for query of Standard Bloom Filter . 16
7.2 Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query 17
7.3 Accuracy (compare DPBloomfilter with true-answer) for Query 20

8 Running Time 21
8.1 Running time for initialization . 21
8.2 Running time for query . 22

9 Experiments 22
9.1 Experiments Setup and Basic Notations . 22
9.2 Experiment Results . 23

10 Discussion 24
10.1 Why Random Response but not Gaussian or Laplace Noise? 24
10.2 Why Flip Both 0 and 1? . 24

11 Conclusion 25

1

1 Introduction

In the current data-rich era, extracting meaningful information from the ever-growing volume of
data presents a significant challenge [SS13]. To address this challenge, various data structures
have been developed to facilitate the extraction of insights from vast datasets [Cha06], such as the
Bloom filter [Blo70], count-min sketch [Cor09], hyperloglog [FFGM07], and so on. Among them,
the Bloom filter mainly handles membership queries in big data [Blo70]; count-min sketch handles
the frequency of occurrence of a certain type of data in big data [Cor09]; Hyperloglog is used to
count the cardinality of a set of data, that is, the number of different elements in this set of data
[FFGM07].

In this paper, we focus more on the Bloom filter [Blo70], which is a space-efficient probability
data structure that deals with membership queries. Due to its efficient space utilization and low time
complexity, it is widely used in various scenarios, especially industry scenarios requiring massive
data processing and low-latency response capability. Classical scenarios include database systems
and web-cache systems [Gre82, NGP09, ML16, PNB20].

In addition to the scenarios mentioned above, the Bloom filter is also used in various scenarios
involving sensitive user data. One usage is the privacy-preserving dataset intersection: When two
organizations want to find out what user data they have in common without revealing specific user
information, Bloom filters can be used. By converting the respective user datasets into Bloom
filters and then performing an intersection operation, common elements can be determined without
exposing specific user records [Bud13, JS11]. Another scenario is anonymous login: Bloom filters
can store hash values of login credentials. When a user tries to log in, the system can check whether
the hash of the credentials may exist in the filter instead of storing the actual password hash [LVD11,
BCMP20]. Since the content inserted into the Bloom filter is user-sensitive, preventing attackers
from reconstructing user-sensitive information from the released Bloom filter vector is an essential
task.

In this work, we consider the differential privacy of the Bloom filter under the membership query
scenario. The membership query problem involves storing information about a set of elements S
in a space-efficient manner to determine if an element x is a member of S. One example is the
membership query application of the Bloom filter in streaming media recommendation [WZW+14],
such as Tiktok. That is, the Bloom filter will be used for filtering to prevent users from being
recommended duplicate content when using streaming media. The Bloomfilter vector mentioned
above will also be released to other businesses, such as advertising, e-commerce, etc. When the
Bloomfilter vector is released, the user’s privacy information, which videos the user has watched,
needs to be well protected.

Thus, we introduce our DPBloomfilter (Algorithm 1) to protect the sensitive user information
stored in the Bloomfilter vector, i.e. the m index binary bits based on the hash values generated
by k different hash functions. To implement a differential privacy budget, we used the classic
random response technique [War65] (Definition 3.4) in differential privacy, which randomly flips
some bits to ensure that attackers cannot restore sensitive user data from neighboring datasets
(Definition3.2). We theoretically show that our DPBloomfilter achieves (ϵ, δ)-DP guarantee, where
the main technique is that we first ensure each bit holds a certain DP guarantee so that we achieve
(ϵ, δ)-DP for the entire Bloom filter. Also, we have theoretically proved that our DPBloomfilter
has high utility when DP parameters are in a certain regime. Furthermore, our empirical evidence
verifies our utility analysis that our DPBloomfilter can procedure membership query services with
high accuracy while protecting user data privacy. While providing privacy guarantees, our algorithm
preserves the same running complexity as the standard Bloom filter.

Our contribution can be summarized as follows:

2

• To the best of our knowledge, this is the first work to provide DP for the Bloom filter for
membership query problems.

• We have proved from a theoretical perspective that DPBloomfilter can achieve (ϵ, δ)-DP
under the random response mechanism while preserving the same running time complexity
compared with the standard Bloom filter.

• We have proved from a theoretical perspective that when the DP parameters ϵ and δ are very
small, DPBloomfilter can still maintain good utility.

• Our simulation experiments also reflect the same effect as our theoretical results. The two
confirm each other.

Roadmap. Our paper is organized as follows. In Section 2, we review related literature.
Section 3 presents the preliminary of Bloom Filter and Differential Privacy. In Section 4, we
outline the main results of our algorithm. In Section 5, we elaborate the derivations for the closed-
form distribution of the random variable W , where N is the 1 − δ quantile of W . Section 6
contains the proof of privacy guarantees for DPBloomfilter. Section 7 presents a detailed analysis
of utility guarantees for DPBloomfilter. Section 8 restates the analysis results of running time for
DPBloomfilter. Section 10 elaborates on the underlying intuitions that informed the design of the
DPBloomfilter. In Section 11, we conclude our paper.

2 Related Work

In Section 2.1, we introduce the mechanism and properties, as long as some variants of the Bloom
filter. In Section 2.2, we discuss several principle mechanisms used in differential privacy. In
Section 2.3, we show the importance of differential privacy in contemporary data mining and
recommendation systems.

2.1 Bloom Filter

The Bloom filter is first introduced by [Blo70] and there are many variants of the Bloom filter.
One variant is the Cuckoo filter [FAKM14], which “kicks out” the old hash value to another place
when a hash conflict occurs. This implementation principle enables it to support the probability
data structure of membership queries with deletion operation. Compared with the Standard Bloom
filter, it is more suitable for application scenarios with frequent element updates, such as network
traffic monitoring [GJH18] and cache system [WYQ+22].

Another variant is the Quotient filter [GFCO18], which differs from the traditional Bloom filter.
It implements the heretical storage form of hash value atmosphere quotient and remainder. This
approach results in the Quotient filter requiring less storage space and offering faster query speeds
than the standard Bloom filter. It is more suitable for membership queries in scenarios with limited
resources and high latency requirements [PCD+21, AHA16].

2.2 Differential Privacy

Differential privacy is a technique used to defend against privacy attacks, first proposed by Dwork et
al. [DMNS06]. It has become one of the most popular frameworks for ensuring privacy in theoretical
analysis and a wide range of application scenarios [LLSY17, YGZ+23, SGP24, LSSS24, LLS+24,
LSSZ24, FLL24].

3

Gaussian mechanism [DMNS06] and Laplace mechanism [DR+14] of DP are widely used tech-
niques to achieve privacy budget. These two mechanisms control the amount of privacy provided
by adjusting the variance of the added noise. However, these two mechanisms are very useful when
the output is continuous, but they are slightly weak when the output is discrete. However, another
classic way to make a data structure private is to add a random responses mechanism [War65],
also called a “flip coin”. Specifically, some discrete values in the data structure are flipped with a
certain probability to achieve privacy [LL23, LL24]. By controlling the probability of flipping, a
given privacy budget is achieved.

Over the past decade, numerous works have applied differential privacy to data structures or
deep learning models. [KNRS13] applied differential privacy to graph data structure and designed
differentially node-private algorithms by projecting input graphs onto bounded-degree graphs, en-
hancing privacy while maintaining accuracy in realistic network analyses. [WXY+18] introduced
an adaptive method for directly collecting frequent terms under local differential privacy by con-
structing a trie, which can overcome challenges of accuracy and utility compared to existing n-gram
approaches. [FI19] focused on applying differential privacy to classical data mining data structures,
specifically decision trees, and analyzes the balance between privacy and utility of existing meth-
ods. [ZQR+22] demonstrated the integration of differential privacy into linear sketches, ensuring
privacy while maintaining high performance in processing sensitive data streams. A related work
[AGK12] introduced the BLIP mechanism, which also applies the Random Flip mechanism to the
Bloom Filter. Here, we outline the differences between our work and [AGK12] as follows: (i) Our
proposed DPBloomFilter can satisfy (ϵ, δ)−DP , while [AGK12] only verified that BLIP mechanism
can satisfy ϵ-DP; (ii) [AGK12] did not provide theoretical guarantees for the utility of the BLIP
mechanism.

2.3 Privacy in Data Mining and Recommendation System

The preservation of privacy is increasingly vital within the realms of data mining and recommen-
dation systems[KMT19].

In data mining, various studies have emerged that concentrate on how to extract knowledge
inherited in user behavior data without compromising user privacy. For instance, [WDZ24] intro-
duced a density-based clustering technique incorporating differential privacy. [TCNZ24] delved into
the application of local differential privacy (LDP) to forestall privacy violations during the aggrega-
tion of user data, in addition to investigating data poisoning attacks on LDP. Moreover, [LZLY23]
has managed to maintain both efficiency and availability in mining user behavior features within
specific industries while also employing differential privacy. Besides, [SGP24] proposes a novel dif-
ferentially private GNN that employs a progressive training scheme and aggregation perturbation
to enhance privacy while maintaining accuracy.

On the recommendation system front, it has become common practice for streaming media and
advertising companies to utilize sensitive user data, including real-time geographic locations, for
user recommendations. In response to these privacy concerns, [MM09] first introduced a differential
privacy framework tailored for recommendation systems. Besides, [BMG+20] attempts to build a
Recommendation with an Attribute Protection (RAP) model, which simultaneously recommends
relevant items and counters private-attribute inference attacks. More recently, [XCS24] developed
a federated recommendation framework that integrates differential privacy to shield user privacy,
reducing the impact of privacy protection on recommendation quality. [HH23] identified a heavy
reliance on user data in existing recommendation systems, leaving them susceptible to privacy
breaches.

Privacy remains a critical concern in recommendation systems and data mining. This area

4

of study is ripe for further exploration, and addressing these privacy challenges will require a
substantial journey ahead.

3 Preliminary

In Section 3.1, we describe the notations we use in this paper. Section 3.2 provides the formal
definition of Bloom Filter. Section 3.3 presents the formal definition of Differential Privacy, followed
by a discussion on its basic composition in Section 3.4.

3.1 Notations

For any positive integer n, let [n] denote the set {1, 2, · · · , n}. We use E[] to denote the expectation
operator and Pr[] to denote probability. We use n! to denote the factorial of integer n. We use
An

m := m!
(m−n)! to denote the number of permutation ways to choose n elements from m elements

considering the order of selection. We use
(
m
n

)
:= m!

n!(m−n!) to denote the number of combination
ways to choose n elements from m elements without considering the order of selection. We use
FX(x) to denote the Cumulative Distribution Function (CDF) of a random variable X and use
F−1
X (1− δ) to denote the 1− δ quantile of FX(x).

3.2 Bloom Filter

A Bloom filter is a space-efficient probabilistic data structure used to test whether an element is a
member of the set. Its formal definition is as follows.

Definition 3.1 (Bloom Filter, [Blo70]). A Bloom filter is used to represent a set A = {x1, x2, . . . , x|A|}
of |A| elements from a universe U = [n]. A Bloom filter consists of a binary array g ∈ {0, 1}m of m
bits, which are initially all set to 0, and uses k independent random hash functions h1, . . . , hk with
range {0, . . . ,m− 1}. These hash functions map each element in the universe to a random number
uniform over the range {0, . . . ,m − 1} for mathematical convenience. The computation time per
execution for all hash functions is Th. Bloom Filter supports the following operations:

• Init(A). It takes dataset A as input. For each element x ∈ A, the bits hi(x) of array g are
set to 1 for 1 ≤ i ≤ k.

• Query(y ∈ [n]). It takes an element y as input. If all hi(y) are set to 1, then it outputs a
binary answer to indicate that y ∈ A. If not, then it outputs y is not a member of A.

A Bloom Filter does not have false negative issues but may yield a false positive issue, where
it suggests that when a query is made to check if an element is in the set but all the positions
it maps to are already set to 1 (due to previous insertions of elements of dataset A). Following
previous literature [LL23, BCFM98, LK11, LOZ12], we assume a hash function selects each array
position with equal probability. Then, the false positive rate of the Bloom Filter defined above can
be mathematically approximated by the formula below

(1− e−
k|A|
m)k.

3.3 Differential Privacy

We begin with introducing the neighboring dataset. We follow the standard definition in the DP
literature of “neighboring” for binary data vectors: two datasets are adjacent if they differ in one
element. The formal statement is as follows.

5

Definition 3.2 (Neighboring Dataset, [DMNS06]). A,A′ ∈ {0, 1}n are neighboring datasets if they
only differ in one element, i.e., Ai ̸= A′

i for one i ∈ [n] and Aj = A′
j, for j ̸= i.

Differential Privacy (DP) ensures that the output of an algorithm remains statistically similar,
under neighboring datasets introduced above, thereby protecting individual privacy. Its formal
definition is as follows.

Definition 3.3 (Differential Privacy, [DMNS06]). For a randomized algorithm M : U → Range(M)
and ϵ, δ ≥ 0, if for any two neighboring data u and u′, it holds for ∀Z ⊂ Range(M)

Pr[M(u) ∈ Z] ≤ eϵ Pr[M(u′) ∈ Z] + δ,

then algorithm M is said to satisfy (ϵ, δ)-differentially privacy. If δ = 0, M is called ϵ-differentially
private.

Finally, we introduce the formal definition of the random response mechanism.

Definition 3.4 (Random response mechanism). Let g ∈ {0, 1}m denote the m bit array in the
Bloom filter. For any j ∈ [m], let g̃[j] denote the perturbed version of g[j], using the random
response mechanism. Namely, for any j ∈ [m], we have

Pr[g̃[j] = y] =

{
eϵ0/(eϵ0 + 1), y = g[j]

1/(eϵ0 + 1), y = 1− g[j]

Let a = eϵ0/(eϵ0 +1), b = 1/(eϵ0 +1). Since a/b = eϵ0 , this implies random response can achieve
ϵ0-DP.

3.4 Basic Composition of Differential Privacy

If multiple differential privacy algorithms are involved, a composition rule becomes necessary. This
section presents the simplest form of composition, as stated in the following lemma.

Lemma 3.5 (Basic composition, [GKK+23]). Let M1 be an (ϵ1, δ1)-DP algorithm and M2 be an
(ϵ2, δ2)-DP algorithm. Then M(X) = (M1(X),M2(M1(X), X) is an (ϵ1+ϵ2, δ1+δ2)-DP algorithm.

The basic composition lemma quantifies the total privacy loss across all operations. This is
essential for determining whether the overall privacy guarantee remains acceptable.

4 Main Results

In Section 4.1, we will provide the privacy of our algorithm. Then, we will examine the utility
implications of our algorithm applying a random response mechanism. In Section 4.2, we introduce
the utility guarantees of our algorithm. In Section 4.3, we demonstrate that DPBloomfilter does
not import running complexity burden to the standard Bloom filter.

4.1 Privacy for DPBloomfilter

Algorithm 1 illustrates the application of the random response mechanism to the standard Bloom
filter, thereby accomplishing differential privacy. In detail, once the Bloom filter is initialized, each
bit in the m-bit array is independently toggled with a probability of 1

ϵ0+1 . Our algorithm will ensure
that modifications to any element within the dataset are protected to a degree, as the DPBloomfilter
maintains the privacy of the altered element. Then, we present the Theorem demonstrating that
our algorithm is (ϵ, δ)-DP.

6

Algorithm 1 Differentially Private Bloom Filter

1: data structure DPBloomFilter ▷ Theorem 4.1, 4.2, 4.3
2:

3: members
4: [n] is the set universe
5: k is the number of hash functions
6: Let g ∈ {0, 1}m.
7: Let hi : [n]→ [m] for each i ∈ [k]
8: end members
9:

10: procedure Init(A ⊂ [n], k ∈ N+,m ∈ N+) ▷ Lemma 8.1
11: Let m denote the length of the filter
12: We pick k random hash functions, say they are h1, h2, · · · , hk, for each i ∈ [k], hi : [n]→ [m]
13: Set every entry of g to 0.
14: Let N = F−1(1− δ), and ϵ0 := ϵ/N
15: for x ∈ A do
16: for i = 1→ k do
17: Let j ← hi[x]
18: g[j]← 1
19: end for
20: end for
21: for j = 1→ m do
22: g̃[j]← g[j] with probability eϵ0

eϵ0+1

23: g̃[j]← 1− g[j] with probability 1
eϵ0+1

24: end for
25: end procedure
26:

27: procedure Query(y ∈ [n]) ▷ Lemma 8.2, Theorem 4.1, Theorem 4.2
28: for i = 1→ k do
29: Let j ← hi[y]
30: if g̃[j] ̸= 1 then
31: return false
32: end if
33: end for
34: return true
35: end procedure
36:

37: data structure

Theorem 4.1 (Privacy for Query, informal version of Theorem 6.2). Let N := F−1
W (1 − δ) and

ϵ0 = ϵ/N . Then, we can show, the output of Query procedure of Algorithm 1 achieves (ϵ, δ)-DP.

Theorem 4.1 shows that our DPBloomfilter in Algorithm 1 is (ϵ, δ)-DP. Our main technique
leverages the single-bit random response technique to enhance the privacy properties of the tradi-
tional Bloom filter by composition rule (Lemma 3.5).

7

4.2 Utility for DPBloomfilter

Despite the introduction of privacy-preserving mechanisms, our algorithm still ensures that the
utility of the Bloom Filter remains acceptable. This is achieved through careful calibration of the
Random Response technique parameters, balancing the need for privacy with the requirement for
accurate set membership queries. Here, we present the theorem for the entire utility loss between
the output of our algorithm and ground truth.

Theorem 4.2 (Accuracy (compare DPBloom with true-answer) for Query, informal version of
Theorem 7.4). If the following conditions hold

• Let z ∈ {0, 1} denote the true answer for whether x ∈ A.

• Let ẑ ∈ {0, 1} denote the answer for whether x ∈ A output by Bloom Filter.

• Let α := Pr[z = 0] ∈ [0, 1], t := eϵ0/(eϵ0 + 1), and δerr > 0.

Then, we can show

Pr[z̃ = z] ≥ δerr · α · (1− t− tk) + α · t.

Theorem 4.2 shows that when most queries are not in A, the above theorem can ensure that the
utility of DPBloomfilter has a good guarantee. Namely, in such cases, answers from DPBloomfilter
are correct with high probability.

4.3 Running Complexity of DPBloomfilter

Now, we introduce the running complexity for the DPBloomfilter in the following theorem.

Theorem 4.3 (Running complexity of DPBloomfilter). Let Th denote the time of evaluation of
function h at any point. Then, for the DPBloomfilter (Algorithm 1) we have

• The running complexity for the initialization procedure is O(|A| · k · Th +m).

• The running complexity O(k · Th) for a single query.

Proof. It can be proved by combining Lemma 8.1 and 8.2.

Our Theorem 4.3 shows that DPBloomfilter not only addresses the critical need to protect
the privacy of elements stored with Bloom filter but also ensures that the data structure’s utility
remains acceptable, with minimal impact on its computational efficiency. By keeping the running
time within the same order of magnitude as the standard Bloom filter, our approach is practical
for real-world applications requiring fast and scalable set operations.

5 Proof for 1− δ Quantile

In this section, we provide the calculation of the probability distribution of random variable W :=∑m
j=1 1{g[j] ̸= g′[j]}, which plays an important part in the proof of the privacy guarantee for our

algorithm (see Section 6). In Section 5.1, we present the definition of random variables W,Y,Z
used in this section. In Section 5.2, we calculate the probability distribution of Y . In Section 5.3,
we calculate the probability distribution of Z conditioned on Y . In Section 5.4, we calculate the
probability distribution of W .

8

5.1 Definition

In this section, we present the definitions of random variables which will be used in the section.

Definition 5.1 (Definition of W). Let W :=
∑m

j=1 1{g[j] ̸= g′[j]}, where g ∈ {0, 1}m denotes
the ground truth values generated by dataset A, and g′ ∈ {0, 1}m denotes the ground truth values
generated by neighboring dataset A′.

Definition 5.2 (Definition of Y). Consider a x ∈ [n].
Let y1, y2, · · · , yk denotes the k hash values generated by the standard Bloom filter (Defini-

tion 3.1).
We define Y as the set of distinct values among y1, y2, · · · , yk, where |Y | ∈ 1, 2, · · · , k.

Definition 5.3 (Definition of Z). Consider two data x, x′ ∈ [n].
Let y1, y2, · · · , yk denotes the k hash values generated by x, and y′1, y

′
2, · · · , y′k denotes the k hash

values generated by x′.
Follow the Definition 5.2, let Yx denotes the set of distinct values in y1, y2, · · · , yk, and Yx′

denotes the set of distinct values in y′1, y
′
2, · · · , y′k.

Suppose |Yx| = a, |Yx′ | = b, where a, b ∈ {1, 2, · · · , k}
We define Z is the set of distinct values in Yx ∪ Yx′, where |Z| ∈ {1, 2, · · · , 2k}

5.2 Distribution of Y

Then we proceed to calculate the probability distribution of Y in this section.

Lemma 5.4 (Distribution of Y). If the following conditions hold

• Let y1, y2, · · · , yk be defined in Definition 5.2.

• Let Y be defined as Definition 5.2.

Then, we can show, for y = 1, 2, · · · , k,

Pr[|Y | = y]

=

{
1/mk−1, y = 1(
m
y

)
· yk/mk −

∑k−1
i=1

(
m−i
y−i

)
Pr[Y = i], y = 2, · · · , k

Proof. Step 1. We consider Y = 1 case.
Without any constraints, there are total mk situations. This is because each hash value can

be freely chosen from m positions, and there are k hash values. Therefore, there are total mk

situations.
Then, with constraint Y = 1, k hash values must be assigned to the same position. The position

can be chosen from a total of m positions. Therefore, in this case, there are m situations.
Combining the above two analysis, we have

Pr[Y = 1] =
m

mk

=
1

mk−1
.

Step 2. We consider Y = 2, · · · , k cases.
Similarly, without any constraints, there are total mk situations.

9

Since we need Y = y, we must choose y from different positions in the total m positions.
Therefore, we have

(
m
y

)
term.

Note that in each position, we need at least one hash value. We first compute the number of
freely assigning k hash values to the y positions. Then we remove the failure cases.

As there are y positions and k hash values, we have the yk term for freely assigning k hash
values to y positions.

For the failure case, we have
∑k−1

i=1 Pr[Y = i]·
(
m−i
y−i

)
. The

(
m−i
y−i

)
term is due to repeated counting

for each i ∈ [k − 1], where we first fix i positions and then randomly pick the other y − i different
positions in the total m− i positions.

Thus, in all, we have the following formula,

Pr[Y = y] =

(
m
y

)
· yk

mk
−

k−1∑
i=1

Pr[Y = i] ·
(
m− i

y − i

)
.

5.3 Distribution of Z conditioned on Y

In this section, we calculate the probability distribution of Z condition on Y .

Lemma 5.5 (Probability of Z conditioned on Yx and Yx′). If the following conditions hold

• Let Yx, Yx′ , Z be defined as Definition 5.3.

• Let Am
n denotes n!/(n−m)!.

• Let t := z −max(a, b).

Then, we can show, for z = max(a, b), · · · , (a+ b),

Pr[|Z| = z||Yx| = a, |Yx′ | = b] =
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

Proof. Since the minimum value of Z is max(a, b), without loss of generality, we assume a ≥ b.
Then we have a ≤ z ≤ (a+ b).

Recall we have t = z −max(a, b) = z − a, t ∈ {0, 1, · · · , b}. Then we have

Pr[|Z| = a+ t||Yx| = a, |Yx′ | = b]

=
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

We explain why we have the above equation in the following steps.
Step 1. We consider the denominator.
Without any constraints, since |Yx| = a, we need to choose a from different positions in the

total m positions. Therefore, we have the Aa
m term in the denominator. Similarly, since |Yx′ | = b,

we have the Ab
m term in the denominator.

Step 2. We consider the numerator.
Firstly, since |Yx| = a, we need to choose a different positions in total m positions. Therefore,

we have the Aa
m term in the numerator.

Since Z is defined as Definition 5.3, we can have the following

|Yx ∩ Yx′ | = a+ b− z

10

|Yx′ | − |Yx ∩ Yx′ | = z − a

= t

Then, we need to choose t values from Yx′ to construct |Yx′ | − |Yx ∩ Yx′ | part. Therefore, we
have the

(
b
t

)
term in the numerator.

We also need to choose t different positions in the rest m−a positions for |Yx′ |− |Yx∩Yx′ | part.
Hence, we have the At

m−a term in the numerator.
Lastly, let’s consider the b − t part. For this part, we need to choose b − t different positions

from a positions. Therefore, we have the Ab−t
a term in the numerator.

Combining all analyses together, finally, we have

Pr[|Z| = z||Yx| = a, |Yx′ | = b] =
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

5.4 Distribution of W

0 1 2 3 4 5 6
W

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pr
ob

ab
ilit

y
in

 P
er

ce
nt

ag
e

10.0%

28.1%

32.8%

20.4%

7.2%

1.3%
0.1%

Probability Mass Function of W

Figure 1: Let W := |S| denote the number of bits in the Bloom filter changed by substituting an
element in the inserted set A (Definition 3.2). We achieve ϵ0-DP for each single bit and (ϵ, δ)-DP
for the entire Bloom filter via the random response (Definition 3.4), where ϵ0 = ϵ/N . The N is 1−δ
quantile of the random variable W . We visualize the distribution of the random variable W (see
Lemma 5.6) under the setting described in the experiments section (Section 9). Namely, we have
the bit array length in the Bloom filter m = 219, the number of elements inserted into the Bloom
filter |A| = 105, and the number of hash functions k = 3. It can be inferred from this visualization
that the values of random variable W have good concentration properties, mostly concentrated
around its mean.

Finally, we present the calculation of the probability distribution of W in this section.

Lemma 5.6 (Distribution of W). If the following conditions hold

• Let Yx, Yx′ , Z be defined as Definition 5.3.

• Let W be defined as Definition 5.1.

• Let Am
n denotes n!

(n−m)! .

11

• Let p0 := (1− 1
m)(|A|−1)k denotes the proportion of bits which are still 0 in the bit-array.

• Let n1 := |Yx ∩ Yx′ | = a+ b− z denotes the number of overlap elements in Yx and Yx′.

• Let n2 := |Yx ∪Yx′ | − |Yx ∩Yx′ | = z− (a+ b− z) = 2z− a− b denotes the number of exclusive
or elements in Yx and Yx′.

Then, we can show, for w = 0, · · · 2k,

Pr[W = w]

=

k∑
a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a] · Pr[|Yx′ | = b].

where

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

=

{
0, n2 < w(
n2

w

)
· pw0 · (1− p0)

n2−w, n2 ≥ w

Proof. By basic probability rules, we have the following equation

Pr[W = w]

=
k∑

a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a, |Yx′ | = b]

=

k∑
a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a] · Pr[|Yx′ | = b].

where the first step follows from basic probability rules, the second step follows from Yx, and Yx′

are independent.
We can get the probability of Pr[|Yx| = a] and Pr[|Yx′ | = b from Lemma 5.4.
We can get the probability of Pr[|Z| = z||Yx| = a, |Yx′ | = b] from Lemma 5.5.
Now, let’s consider the Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] term.
Note that only elements in the exclusive-or set may contribute to the final W . Therefore, we

have w ≤ n2. Namely, when n2 < w, we have Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] = 0.
Now, let’s calculate Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] under n2 ≥ w condition.
Recall x denotes the element deleted from A, and x′ denotes the element added to A for

constructing the neighbor dataset A′.
Let Afix := A− x denote the fixed set of elements during the modifications. We have |Afix| =

|A| − 1.
Consider the following steps:

12

• We construct a new Bloom filter.

• We insert all elements in Afix in the Bloom filter.

• We define Zzero as the set of positions of bits which are still 0 after the insertion of Afix.

We define Zxor as the exclusive-or set of Yx and Yx′ . We have

Zxor = (Yx ∪ Yx′)− (Yx ∩ Yx′),

|Zxor| = |Yx ∪ Yx′ | − |Yx ∩ Yx′ |
= z − (a+ b− z)

= 2z − a− b

= n2.

Note that only positions in Zxor∩Zzero will contribute toW . Namely, we need |Zxor∩Zzero| = w.
We achieve the above condition by selecting w elements in Zxor and let them satisfy the condition

of Zzero.
Therefore, we have

Pr[|Zxor ∩ Zzero| = w]

=

(
n2

w

)
· (1− 1

m
)(|A|−1)kw · (1− (1− 1

m
)(|A|−1)k)n2−w.

Combining the above analysis, we have

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

=

{
0, n2 < w(
n2

w

)
· pw0 · (1− p0)

n2−w, n2 ≥ w
.

6 Privacy guarantees for one coordinate

In this section, we provide proof of the privacy guarantees of the DPBloomfilter.
In Section 6.1, we demonstrate the privacy guarantees for single bit of array in Bloom filter.
Then in Section 6.2, we provide the proof of privacy guarantees for our entire algorithm.

6.1 Single bit is private

We first consider the privacy guarantees of single bit of array in Bloom filter.

Lemma 6.1 (Single bit is private). If the following conditions hold:

• Let ϵ0 ≥ 0.

• Let g̃[j] ∈ {0, 1} be the i-th element of array output by DPBloomfilter

Then, we can show that, for all j ∈ [m], g̃[j] is ϵ0-DP.

13

Proof. ∀j ∈ [m], g[j] is the ground truth value generated by dataset A ⊂ [n]. (An alternative view
of g is g : [m] → {0, 1}.) Suppose g[j] = u, u ∈ {0, 1}. For any neighboring dataset A′ ⊂ [n], we
denote the ground truth value generated by it as g′[j]. Similarly, we can define the g̃′[j].

We consider the following two cases to prove g̃[j] is ϵ0-DP, for all j ∈ [m].
Case 1. Suppose g′[j] = u. We know

Pr[g̃[j] = u] =
eϵ0

eϵ0 + 1
,

Pr[g̃′[j] = u] =
eϵ0

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = u]

Pr[g̃′[j] = u]
= 1.

Similarly, we know

Pr[g̃[j] = 1− u] =
1

eϵ0 + 1
,

Pr[g̃′[j] = 1− u] =
1

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = 1− u]

Pr[g̃′[j] = 1− u]
= 1.

Thus, we know for all v ∈ {0, 1},

Pr[g̃[j] = v]

Pr[g̃′[j] = v]
= 1.

Case 2. Suppose g′[j] ̸= u.
We know

Pr[g̃[j] = u] =
eϵ0

eϵ0 + 1
,

Pr[g̃′[j] = u] =
1

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = u]

Pr[g̃′[j] = u]
= eϵ0 .

Similarly, we know

Pr[g̃[j] = 1− u] =
1

eϵ0 + 1
,

Pr[g̃′[j] = 1− u] =
eϵ0

eϵ0 + 1
.

14

Combining the above two equations, then we obtain

Pr[g̃[j] = 1− u]

Pr[g̃′[j] = 1− u]
= e−ϵ0 .

For v ∈ {0, 1}, we have

e−ϵ0 ≤ Pr[g̃[j] = v]

Pr[g̃′[j] = v]
≤ eϵ0 .

Therefore, ∀j ∈ [m], g̃[j] is ϵ0-DP.

6.2 Privacy guarantees for DPBloomfilter

Then, we can prove that our entire algorithm is differentially private.

Theorem 6.2 (Privacy for Query, formal version of Lemma 4.1). If the following conditions hold

• Let N = F−1
W (1− δ) denote the 1− δ quantile of the random variable W (see Definition 5.1).

• Let ϵ0 = ϵ/N .

Then, we can show, the output of Query procedure of Algorithm 1 achieves (ϵ, δ)-DP.

Proof. Let A and A′ are neighboring datasets. Let g ∈ {0, 1}m is the ground truth value generated
by dataset A, and g′ ∈ {0, 1}m is the ground truth value generated by dataset A′.

We define

S := {j ∈ [m] : g[j] ̸= g′[j]}.

We further define

S := [m]\S.

We consider two cases, Case 1 is j ∈ S and Case 2 is j ∈ S.
Case 1. j ∈ S.
We can show that

Pr[g̃[j] = v]

Pr[g̃′[j] = v]
= 1.

holds for ∀v ∈ {0, 1}.
Case 2. j ∈ S.
We can show that

e−ϵ0 ≤ Pr[g̃[j] = v]

Pr[g̃′[j] = v]
≤ eϵ0 . (1)

holds for ∀v ∈ {0, 1}.
Thus, for any Z ∈ {0, 1}m, the absolute privacy loss can be bounded by

| ln Pr[g̃ = Z]

Pr[g̃′ = Z]
| = | ln

∏
j∈S

Pr[g̃[j] = v]

Pr[g̃′[j] = v]
|

15

≤ |S|ϵ0
= |S| ϵ

N
. (2)

where the first step follows from each entry of g is independent, the second step follows from Eq. (1),
and the last step follows from choice of ϵ0.

By the definition of N , we know that with probability at least 1 − δ, |S| ≤ F−1(1 − δ) = N .
Hence, Eq. (2) is upper bounded by ϵ with probability 1− δ.

This proves the (ϵ, δ)-DP.

7 Utility analysis

In this section, we establish the utility guarantees for our algorithm. Initially, we calculate the accu-
racy for the query of the standard Bloom filter in Section 7.1. We then assess the utility loss caused
by introducing the random response technique by comparing the output of the DPBloomfilter with
the output of the standard Bloom filter in Section 7.2. Ultimately, we present the assessment of
our algorithm’s utility in Section 7.3.

We begin by defining the notation we will use in this section.

Definition 7.1. Let z ∈ {0, 1} denote the true answer for whether x ∈ A. Let ẑ ∈ {0, 1} denote the
answer outputs by Bloom filter. Let z̃ ∈ {0, 1} denote the answer output by DPBloomFilter
(Algorithm 1).

7.1 Accuracy for query of Standard Bloom Filter

We first present the accuracy of the query of the standard bloom filter, as follows.

Lemma 7.2 (Accuracy for query of Standard Bloom Filter). If the following conditions hold

• Assume that a hash function selects each array position with equal probability.

• Let ẑ be defined as Definition 7.1.

• Let z be defined as Definition 7.1.

• Let α := Pr[z = 0]

Then, we can show

Pr[ẑ = z] ≥ 1− (1− e−2|A|k/m)k · α.

Further if m = Ω(|A|k) and k = Θ(log(1/δerr)), we have

Pr[ẑ = z] ≥ 1− δerr · α.

Proof. Recall that we have defined Bloom filter in Definition 3.1, it only has false positive error.
Therefore, we only need to calculate the following

Pr[ẑ = 1|z = 0]

Recall that A ⊂ [n] denotes the set of elements inserted into the Bloom filter. And hi : [n]→ [m]
for each i ∈ [k] denotes k hash functions used in the Bloom filter.

16

For a query y /∈ A, we denotes event E1 happens if the following happens:

hi[y] = 1,∀i ∈ [k]

Recall that we have defined Bloom filter in Definition 3.1, we have

Pr[ẑ = 1|z = 0] = Pr[E1]. (3)

Now, we start calculating Pr[E1].
Recall that we assume a hash function selects each array position with equal probability in the

lemma statement.
During one inserting operation, the probability of a certain bit is not set to 1 is

(1− 1

m
)k

If we have inserted |A| elements, the probability that a certain bit is still 0 is

(1− 1

m
)|A|k = ((1− 1

m
)m)|A|k/m ≥ e−2|A|k/m

where the last step follows from (1− 1/m)m ≥ e−2 for all m ≥ 2.
Thus the probability that a certain bit is 1 is

1− (1− 1

m
)|A|k ≤ 1− e−2|A|k/m.

Combining the above fact, we have

Pr[E1] = (1− (1− 1

m
)|A|k)k

≤ (1− e−2|A|k/m)k. (4)

where the first step follows from the definition of event E1, the second step follows from (1−1/m)m ≥
e−2 for all m ≥ 2.

Therefore, the accuracy of Bloom filter is

Pr[ẑ = z] = 1− Pr[ẑ = 1|z = 0]Pr[z = 0]

= 1− Pr[E1]α

≥ 1− (1− e−2|A|k/m)kα.

where the first step follows from Bloom filter only has false positive error, the second step follows
from the definition of event E1 and the definition of α, the third step follows from Eq. (4).

7.2 Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query

We then assess the accuracy loss caused by the introduction of the random response technique by
comparing the outputs of the DPBloomfilter with those of the standard Bloom filter.

Lemma 7.3 (Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query). If the
following conditions hold

17

• Let ẑ be defined as Definition 7.1.

• Let z̃ be defined as Definition 7.1.

• Let α := Pr[z = 0] ∈ [0, 1]

• Let t := eϵ0
eϵ0+1 .

• Let δerr be defined as in Lemma 7.2.

Then, we can show

Pr[z̃ = ẑ] ≥ t · (α− δerr).

Proof. We denote the query as q.
We define

Q := {j ∈ [m] : hi(q) = j, i ∈ [k]} (5)

We denote Q[i] as the i-th element in Q.
Using basic probability rules, we have

Pr[z̃ = ẑ]

= Pr[z̃ = 1|ẑ = 1]Pr[ẑ = 1]

+ Pr[z̃ = 0|ẑ = 0]Pr[ẑ = 0].

Step 1. Calculate Pr[z̃ = 1|ẑ = 1]
We denote event E2 happens as the following happens:

g̃[j] = g[j], ∀j ∈ Q.

Recall that we have defined Bloom filter in Definition 3.1, we have

Pr[z̃ = 1|ẑ = 1] = Pr[E2].

Now, we calculate the probability that E2 happens.

Pr[E2] =
k∏

i=1

Pr[g̃[Q[i]] = g[Q[i]]]

= (
eϵ0

eϵ0 + 1
)k.

where the first step follows from each entry of g is independent, the second steps follows from the
definition of g̃.

Therefore, we have

Pr[z̃ = 1|ẑ = 1] = (
eϵ0

eϵ0 + 1
)k. (6)

Step 2. Calculate Pr[z̃ = 0|ẑ = 0]

18

Recall we have defined Q ⊂ [m] in Eq. (5). We further define

Z := {j ∈ Q : g[j] = 0}.

We denote Z[i] as the i-th element in Z.
We further define

Q := Q\Z.

By basic probability rules, we have

Pr[z̃ = 0|ẑ = 0] = 1− Pr[z̃ = 1|ẑ = 0].

Now, let’s calculate Pr[z̃ = 1|ẑ = 0]
[z̃ = 1|ẑ = 0] happens only if the following conditions hold:

1. All elements in Z flip from 0 to 1.

2. All elements in Q remain 1.

Then, we have

Pr[z̃ = 1|ẑ = 0] =

|Z|∏
i=1

Pr[g̃[Z[i]] = 1]

|Q|∏
i=1

Pr[g̃[Q[i]] = 1]

= (
1

eϵ0 + 1
)|Z|(

eϵ0

eϵ0 + 1
)|Q|

≤ (
1

eϵ0 + 1
)|Z|

≤ 1

eϵ0 + 1
.

where the first step follows from the above analysis, the second step follows from the definition of
g̃, the third step follows from |Q| ≥ 0 and eϵ0

eϵ0+1 < 1, the fourth step follows from |Z| ≥ 1 and
1

eϵ0+1 < 1.
Therefore, we have

Pr[z̃ = 0|ẑ = 0] = 1− Pr[z̃ = 1|ẑ = 0]

≥ 1− 1

eϵ0 + 1

=
eϵ0

eϵ0 + 1
. (7)

Let α̂ := Pr[ẑ = 0], then we have 1− α̂ = Pr[ẑ = 1]. Let α := Pr[z = 0]. Note that α̂ = α(1− δerr).
Let t := eϵ0

eϵ0+1 .
The final accuracy is

Pr[z̃ = 0|ẑ = 0] · Pr[ẑ = 0] + Pr[z̃ = 1|ẑ = 1] · Pr[ẑ = 1]

= Pr[z̃ = 0|ẑ = 0] · α̂+ Pr[z̃ = 1|ẑ = 1] · (1− α̂)

= Pr[z̃ = 0|ẑ = 0] · α(1− δerr)

+ Pr[z̃ = 1|ẑ = 1] · (1− α+ α · δerr)

19

≥ eϵ0

eϵ0 + 1
· α(1− δerr) + (

eϵ0

eϵ0 + 1
)k · (1− α+ α · δerr)

= t · (α− α · δerr) + tk · (1− α+ α · δerr)
≥ t · α · (1− δerr).

where the first step follows from the definition of α̂, the second step follows from α̂ = α(1− δ),
the third step follows from Eq. (6) Eq. (7), the fourth step follows from basic algebra rules, the
fifth step follows from (1− α+ α · δerr) ≥ 0.

Therefore, the final accuracy is t · (α− δerr).

7.3 Accuracy (compare DPBloomfilter with true-answer) for Query

Now we can examine the utility guarantees of DPBloomfilter by calculating the error between the
ground truth for query and the output of DPBloomfilter.

Theorem 7.4 (Accuracy (compare DPBloomfilter with true-answer) for Query, formal version of
Lemma 4.2). If the following conditions hold

• Let ẑ be defined as Definition 7.1.

• Let z be defined as Definition 7.1.

• Let α := Pr[z = 0] ∈ [0, 1]

• Let t := eϵ0/(eϵ0 + 1).

• Let δerr be defined as in Lemma 7.2.

Then, we can show

Pr[z̃ = z] ≥ α(1− t− tk)δerr + αt.

Proof. We have

Pr[z̃ = z]

= Pr[z̃ = 0|ẑ = 0]Pr[ẑ = 0|z = 0]Pr[z = 0]

+ Pr[z̃ = 0|ẑ = 1]Pr[ẑ = 1|z = 0]Pr[z = 0]

+ Pr[z̃ = 1|ẑ = 1]Pr[ẑ = 1|z = 1]Pr[z = 1]

+ Pr[z̃ = 1|ẑ = 0]Pr[ẑ = 0|z = 1]Pr[z = 1]

≥ t · (1− Pr[E1]) · α+ (1− tk) · Pr[E1] · α+ tk · 1 · (1− α)

= α(1− t− tk)δerr + αt+ tk(1− α)

≥ α(1− t− tk)δerr + αt.

where the first step from basic probability rules, the secod step follows from Equation 3, Equation
7 and definition of α and t, the third step follows from basic algebra, the fourth step follows from
the fact that t, α ∈ [0, 1].

To make it easier to understand, we also provide the utility analysis of the Bloom filter under
the case of random guess.

20

Lemma 7.5 (Accuracy for Query under Random Guess). If the following conditions hold

• Let ẑ be defined as Definition 7.1.

• ϵ0 = 0. Namely, each bit in the bit-array of the DP Bloom has 1
2 probability to be set to 0,

and 1
2 probability to be set to 1.

Then, we can show

Pr[z̃ = 0] = 1− 1

2k
,

Pr[z̃ = 1] =
1

2k
.

Proof. By the definition of Bloom filter 3.1, the answer z̃ = 1 requires k corresponding positions in
the bit-array of the query are all set to 1.

Note that each bit has 1
2 probability to be set to 1. Therefore, we have

Pr[z̃ = 1] =
1

2k
.

Then, we have Pr[z̃ = 0] = 1− Pr[z̃ = 1] = 1− 1
2k
.

8 Running Time

In this section, we provide the proof of running time for Algorithm 1. The running time for
our algorithm consists of two parts: time for initialization in Section 8.1 and time for query in
Section 8.2.

8.1 Running time for initialization

Now we calculate the time of initialization for our algorithm.

Lemma 8.1 (Running time for initialization). Let Th denote the time of evaluation of function h
at any point.

It takes O(|A| · k · Th +m) time to run the initialization function.

Proof. Step 1 Let’s consider the initialization of the standard Bloom filter.
A single element x needs O(k · Th) time to compute over k hash functions.
There are |A| elements which need to be inserted.
Combining the above two facts, it needs O(|A| · k · Th) time to initialise the standard Bloom

filter.
Step 2 Let’s consider the “Flip each bit” part.
Since there are m bits in the Bloom filter, it takes O(m) time to flip each bit.
Therefore, the initialization function needs O(|A| · k · Th +m) time to run.

21

8.2 Running time for query

Then, we proceed to calculate the query time for our algorithm.

Lemma 8.2 (Running time for query). Let Th denote the time of evaluation of function h at any
point. It takes O(k · Th) time to run each query y in the query function.

Proof. For each query y, the algorithm needs O(k · Th) time to compute the hash values of y over
k hash functions.

Therefore, it takes O(k · Th) time to run the query function for each query.

By combing the result of Lemma 8.1 and Lemma 8.2, we can obtain the running of our entire
algorithm is O(|A| · k · Th +m).

9 Experiments

0 4 8 12 16 20 24 28
dp

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%

Er
ro

r
Ra

te

Total Error with diff m
logm=18
logm=19
logm=20
logm=21
logm=22

0 4 8 12 16 20 24 28
dp

0.0%

20.0%

40.0%

60.0%

80.0%

Er
ro

r
Ra

te

False Negative Error with diff m
logm=18
logm=19
logm=20
logm=21
logm=22

0 4 8 12 16 20 24 28
dp

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%

Er
ro

r
Ra

te

False Positive Error with diff m
logm=18
logm=19
logm=20
logm=21
logm=22

Figure 2: Three kinds of error rates with different bit-array lengths m. We fix the number of
inserted elements |A| = 105, the number of hash functions k = 3, and δ = 0.01 in (ϵ, δ)-DP. In the
figure, log denotes log2. Left: Total error denotes the case when we randomly choose queries from
the universe [n]; Middle: False negative denotes the case when we randomly choose queries from
the set S, which represents the set of elements inserted into the DP Bloom filter; Right: False
positive denotes the case when we randomly choose queries from the set S = [n]\S. As m increases,
the total error rate and false positive error rate decrease accordingly, while false negative error rate
remains constant. As ϵ approaches 0, the DP Bloom filter gets closer to random guessing. In this
case, the false positive error rate converges to 1

2k
, and the false negative error rate converges to

1− 1
2k
. This is consistent with our result in Lemma 7.5 Our DPBloomFilter achieves practical

utility when ϵ is small(e.g. ϵ < 10).

In this section, we introduce the simulation experiments conducted on the DPBloomfilter. In
Section 9.1, we introduce the basic setup of our experiments and restate basic definitions of three
kinds of error. In Section 9.2, we discuss the results of our experiments, which align with our
theoretical analysis.

9.1 Experiments Setup and Basic Notations

Recall that we have the following notations. Let m denote the length of the bit array in the
DPBloomfilter. Let |A| denote the number of elements inserted into the DPBloomfilter. Let k
denote the number of hash functions used in the DPBloomfilter. Let ϵ, δ denote the differential
privacy parameters of the DPBloomfilter. Let N denotes the 1−δ quantile ofW (see Definition 5.1),

22

0 4 8 12 16 20 24 28
dp

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%

Er
ro

r
Ra

te
Total Error with diff |A|

|A|=1e1
|A|=1e2
|A|=1e3
|A|=1e4
|A|=1e5

0 4 8 12 16 20 24 28
dp

0.0%

20.0%

40.0%

60.0%

80.0%

Er
ro

r
Ra

te

False Negative Error with diff |A|
|A|=1e1
|A|=1e2
|A|=1e3
|A|=1e4
|A|=1e5

0 4 8 12 16 20 24 28
dp

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%

Er
ro

r
Ra

te

False Positive Error with diff |A|
|A|=1e1
|A|=1e2
|A|=1e3
|A|=1e4
|A|=1e5

Figure 3: Three kinds of error rates with different numbers of inserted elements |A|. We fix the
length of bit-array m = 219, the number of hash functions k = 3, and δ = 0.01 in (ϵ, δ)-DP. As |A|
increases, the Total Error Rate and false positive error rate increase accordingly, while the false
negative error rate remains constant.

0 4 8 12 16 20 24 28
dp

10.0%

20.0%

30.0%

40.0%

50.0%

Er
ro

r
Ra

te

Total Error with diff k
k=1
k=2
k=3
k=4
k=5

0 4 8 12 16 20 24 28
dp

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Er
ro

r
Ra

te

False Negative Error with diff k
k=1
k=2
k=3
k=4
k=5

0 4 8 12 16 20 24 28
dp

10.0%

20.0%

30.0%

40.0%

50.0%

Er
ro

r
Ra

te

False Positive Error with diff k
k=1
k=2
k=3
k=4
k=5

Figure 4: Three kinds of error rates with different numbers of hash function k. We fix the length
of bit-array m = 219, the number of inserted elements |A| = 105, and δ = 0.01 in (ϵ, δ)-DP. As k
increases, the Total Error Rate and false positive error rate decrease accordingly, while the false
negative error rate increases accordingly.

and the close-form of the distribution of W is shown in Lemma 5.6. Let ϵ0 = ϵ/N . By Theorem 4.1,
we choose ϵ0 in this way can guarantee to (ϵ, δ)-DP in the whole algorithm. Unless specified, we
adopt m = 219, |A| = 105, k = 8, n = 263 ≈ 1019 in the following experiments. We choose this n
because this n is the biggest integer that can be represented on our server.

Recall that [n] denotes the universe. Let S denote the elements inserted into the DPBloomfilter.
Let S = [n]\S denote the elements not inserted into the DPBloomfilter. Let z̃ ∈ {0, 1} denote the
answer output by DPBloomfilter.

We report three kinds of error rates in our experiments. They are the following: (1) total
error, where we randomly choose queries from the universe [n] and report the error rate of our
DPBloomfilter; (2) false positive error, where we random choose queries from S. When the
DPBloomfilter outputs z̃ = 1, this will cause a false positive error; (3) false negative error,
where we random choose queries from S. When the DPBloomfilter outputs z̃ = 0, this will cause
a false negative error.

9.2 Experiment Results

In this section, we conduct experiments based on the setting mentioned in the previous section.
Specifically, we run simulation experiments on different m, |A|, and k to demonstrate the utility of
our algorithm under differential privacy guarantees.

23

In Figure 2, we conduct experiments on differentm, whereasm increases, the total error rate and
false positive error rate decrease accordingly, while the false negative error rate remains constant.

In Figure 3, we also conduct experiments on different |A|, whereas |A| increases, the total error
rate and false positive error rate increase accordingly. At the same time, the false negative error
rate remains constant. This phenomenon is consistent with our theoretical analysis of the utility
of DPBloomfilter (Theorem 4.2). Recall that we have α = Pr[z = 0], denoting the probability of
an arbitrary query q /∈ A. Since |A| increases, α decreases, the utility guarantee in Theorem 4.2,
which is consistent with higher error rate in our experiment results.

In Figure 4, we conduct experiments on different k as well, whereas k increases, the total error
rate, and false positive error rate decrease, while the false negative error rate increases accordingly.

Note that in Figure 2, Figure 3, and Figure 4, as ϵ approaches 0, the DPBloomfilter gets closer
to random guessing. In this case, the false positive error rate converges to 1

2k
, and the false negative

error rate converges to 1− 1
2k
. This is consistent with our result in Lemma 7.5. Also, as ϵ increases,

the three types of error rates in the Bloom filter with differential privacy (DP) approach the error
rates observed when DP is not applied. This is consistent with the intuition that when ϵ increases,
there is less privacy. Therefore, the performance approaches the performance of a Bloom filter
without any privacy guarantees.

10 Discussion

Section 10.1 discusses why the random response mechanism is preferred over Gaussian and Laplace
mechanisms for achieving differential privacy. In Section 10.2, we consider the underlying reasons
for applying the random response mechanism to both 1 and 0.

10.1 Why Random Response but not Gaussian or Laplace Noise?

As mentioned in Section 2, Gaussian and Laplace noise are two classical mechanisms to achieve
differential privacy.

The advantage of the Laplace mechanism is that its distribution is concentrated on its mean.
Under the same privacy budget, it will not introduce too much noise like the Gaussian mechanism
due to the long-tail nature of its distribution. The advantage of the Gaussian mechanism is that it
has good mathematical properties and makes it easy to analyze the utility of private data structures.

However, the above two mechanisms are not as effective as the random response (flip coin)
mechanism when dealing with discrete values. Here, we consider the case where the discrete values
are integers. Under certain privacy budgets, the noise added by Gaussian and Laplace mechanisms
does not reach the threshold of 0.5, resulting in attackers being able to remove the noise through
rounding operations easily, and the privacy of the data structure no longer exists.

In our case, each bit of the Bloom filter can only be 1 or 0, which is consistent with the above
situation. Hence, our work only considers the random response mechanism instead of classical
Gaussian and Laplace mechanisms.

10.2 Why Flip Both 0 and 1?

In our work, we apply random response mechanism to each bit in the Bloom filter, either it is 0 or
1. Although this will lead to a certain probability of false negatives in the Bloom filter, we argue
that it is necessary to make the Bloom filter differentially private.

Let’s consider what will happen if we don’t apply random response mechanism like this. Suppose
we only apply random responses to bits that are 1 in the Bloom filter and leave the bits with 0

24

untouched. Following the notations used in Lemma A, we use g ∈ {0, 1}m to represent the bit array
generated by inserting the original dataset into the Bloom filter and g′ ∈ {0, 1}m to represent the
bit array generated by inserting the neighboring dataset into the Bloom filter. We use g̃ and g̃′ to
denote their private version, respectively. Without loss of generality, for some j ∈ [m], we assume
g[j] = 1 and g′[j] = 0. Since we only apply random response mechanism on bits with value 1, then
Pr[g̃′[j] = 1] = 0. Therefore, we cannot calculate Pr[g̃[j] = 1]/Pr[g̃′[j] = 1], since the denominator
is 0. Hence, we cannot have any privacy guarantees under this setting. Similar situations occur
when we apply a random response mechanism on bits with value 0. We also cannot prove the
differential privacy property of the Bloom filter. Therefore, we have to apply the random response
mechanism on bits either with value 0 or 1.

11 Conclusion

In this work, we propose DPBloomfilter, a novel method ensuring the privacy of the Bloom filter
via random response. To the best of our knowledge, this is the first work applying the random
response mechanism to achieve DP on the membership query task of the Bloom filter. From the
privacy side, we have proved that our method achieves (ϵ, δ)-DP with the same running complexity
as the standard Bloom filter. From the utility side, we demonstrate from both theoretical and
experimental perspectives that the Bloom filter can ensure high utility while ensuring differential
privacy.

Acknowledgement

Research is partially supported by the National Science Foundation (NSF) Grants 2023239-DMS,
CCF-2046710, and Air Force Grant FA9550-18-1-0166.

25

References

[AGK12] Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. Blip: non-
interactive differentially-private similarity computation on bloom filters. In Symposium
on Self-Stabilizing Systems, pages 202–216. Springer, 2012.

[AHA16] Mohammad Al-Hisnawi and Mahmood Ahmadi. Deep packet inspection using quotient
filter. IEEE Communications Letters, 20(11):2217–2220, 2016.

[BCFM98] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 327–336, 1998.

[BCMP20] Davide Berardi, Franco Callegati, Andrea Melis, and Marco Prandini. Password
similarity using probabilistic data structures. Journal of Cybersecurity and Privacy,
1(1):78–92, 2020.

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[BMG+20] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,
Alexander Nou, and Huan Liu. Privacy-aware recommendation with private-attribute
protection using adversarial learning. In Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, pages 34–42, 2020.

[Bud13] Prerna Budhkar. Solving intersection searching problem for spatial data using bloom
filters. In 2013 IEEE International Conference on Electronics, Computing and Com-
munication Technologies, pages 1–5. IEEE, 2013.

[Cha06] Chia-Hui Chang. A survey of web information extraction systems. IEEE transactions
on knowledge and data engineering, 18(10):1411–1428, 2006.

[Cor09] Graham Cormode. Count-min sketch., 2009.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryp-
tography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings
3, pages 265–284. Springer, 2006.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[FAKM14] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies, pages 75–88, 2014.

[FFGM07] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. Discrete mathematics
& theoretical computer science, (Proceedings), 2007.

[FI19] Sam Fletcher and Md Zahidul Islam. Decision tree classification with differential pri-
vacy: A survey. ACM Computing Surveys (CSUR), 52(4):1–33, 2019.

26

[FLL24] Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding:
towards better initialization with differential privacy. Advances in Neural Information
Processing Systems, 36, 2024.

[GFCO18] Afton Geil, Martin Farach-Colton, and John D Owens. Quotient filters: Approximate
membership queries on the gpu. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 451–462. IEEE, 2018.

[GJH18] Jan Grashöfer, Florian Jacob, and Hannes Hartenstein. Towards application of cuckoo
filters in network security monitoring. In 2018 14th International Conference on Net-
work and Service Management (CNSM), pages 373–377. IEEE, 2018.

[GKK+23] Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu. On
differentially private counting on trees. In 50th International Colloquium on Automata,
Languages, and Programming (ICALP 2023), volume 261, page 66. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2023.

[Gre82] Lee L Gremillion. Designing a bloom filter for differential file access. Communications
of the ACM, 25(9):600–604, 1982.

[HH23] Ming He and Sheng Hu. A normative approach to privacy-preserving recommender
systems: Integrating matrix factorization and genetic algorithms. International Journal
of Intelligent Systems, 2023, 2023.

[JS11] Mark C Jeffrey and J Gregory Steffan. Understanding bloom filter intersection for lazy
address-set disambiguation. In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, pages 345–354, 2011.

[KMT19] Krishnaram Kenthapadi, Ilya Mironov, and Abhradeep Guha Thakurta. Privacy-
preserving data mining in industry. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pages 840–841, 2019.

[KNRS13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Analyzing graphs with node differential privacy. In Theory of Cryptography: 10th The-
ory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceed-
ings, pages 457–476. Springer, 2013.

[LK11] Ping Li and Arnd Christian König. Theory and applications of b-bit minwise hashing.
Communications of the ACM, 54(8):101–109, 2011.

[LL23] Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise
consistent weighted sampling. arXiv preprint arXiv:2306.07674, 2023.

[LL24] Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random
projection methods. Advances in Neural Information Processing Systems, 36, 2024.

[LLS+24] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid
computation with differential privacy optimization. arXiv preprint arXiv:2408.06395,
2024.

[LLSY17] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory
to practice. Springer, 2017.

27

[LOZ12] Ping Li, Art Owen, and Cun-Hui Zhang. One permutation hashing for efficient search
and learning. arXiv preprint arXiv:1208.1259, 2012.

[LSSS24] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mech-
anisms in neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024.

[LSSZ24] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-
attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[LVD11] Rafael P Laufer, Pedro B Velloso, and Otto Carlos MB Duarte. A generalized bloom
filter to secure distributed network applications. Computer Networks, 55(8):1804–1819,
2011.

[LZLY23] Wenjuan Liang, Wenke Zhang, Songtao Liang, and Caihong Yuan. Privately vertically
mining of sequential patterns based on differential privacy with high efficiency and
utility. Scientific Reports, 13(1):17866, 2023.

[ML16] Ju Hyoung Mun and Hyesook Lim. Cache sharing using a bloom filter in named data
networking. In Proceedings of the 2016 Symposium on Architectures for Networking
and Communications Systems, pages 127–128, 2016.

[MM09] Frank McSherry and Ilya Mironov. Differentially private recommender systems: Build-
ing privacy into the netflix prize contenders. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 627–636,
2009.

[NGP09] Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the
neighborhood graph makes salsa better and faster. In Proceedings of the Second ACM
International Conference on Web Search and Data Mining, pages 242–251, 2009.

[PCD+21] Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton,
and Rob Johnson. Vector quotient filters: Overcoming the time/space trade-off in filter
design. In Proceedings of the 2021 International Conference on Management of Data,
pages 1386–1399, 2021.

[PNB20] Ripon Patgiri, Sabuzima Nayak, and Samir Kumar Borgohain. Passdb: A password
database with strict privacy protocol using 3d bloom filter. Information Sciences,
539:157–176, 2020.

[SGP24] Sina Sajadmanesh and Daniel Gatica-Perez. Progap: Progressive graph neural net-
works with differential privacy guarantees. In Proceedings of the 17th ACM Interna-
tional Conference on Web Search and Data Mining, pages 596–605, 2024.

[SS13] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 international conference
on collaboration technologies and systems (CTS), pages 42–47. IEEE, 2013.

[TCNZ24] Wei Tong, Haoyu Chen, Jiacheng Niu, and Sheng Zhong. Data poisoning attacks
to locally differentially private frequent itemset mining protocols. arXiv preprint
arXiv:2406.19466, 2024.

[War65] Stanley L Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American statistical association, 60(309):63–69, 1965.

28

[WDZ24] Fuyu Wu, Mingjing Du, and Qiang Zhi. Density-based clustering with differential
privacy. Information Sciences, page 121211, 2024.

[WXY+18] Ning Wang, Xiaokui Xiao, Yin Yang, Ta Duy Hoang, Hyejin Shin, Junbum Shin, and
Ge Yu. Privtrie: Effective frequent term discovery under local differential privacy. In
2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 821–
832. IEEE, 2018.

[WYQ+22] Yinyin Wang, Yuwang Yang, Xiulin Qiu, Yaqi Ke, and Qingguang Wang. Ccf-lru:
hybrid storage cache replacement strategy based on counting cuckoo filter hot-probe
method. Applied Intelligence, pages 1–15, 2022.

[WZW+14] Shangguang Wang, Zibin Zheng, Zhengping Wu, Michael R Lyu, and Fangchun Yang.
Reputation measurement and malicious feedback rating prevention in web service rec-
ommendation systems. IEEE Transactions on Services Computing, 8(5):755–767, 2014.

[XCS24] Zihang Xu, Chiawei Chu, and Shiyang Song. An effective federated recommendation
framework with differential privacy. Electronics, 13(8):1589, 2024.

[YGZ+23] Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-
Yan Lam. Local differential privacy and its applications: A comprehensive survey.
Computer Standards & Interfaces, page 103827, 2023.

[ZQR+22] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and
Yu-Xiang Wang. Differentially private linear sketches: Efficient implementations and
applications. Advances in Neural Information Processing Systems, 35:12691–12704,
2022.

29

	Introduction
	Related Work
	Bloom Filter
	Differential Privacy
	Privacy in Data Mining and Recommendation System

	Preliminary
	Notations
	Bloom Filter
	Differential Privacy
	Basic Composition of Differential Privacy

	Main Results
	Privacy for DPBloomfilter
	Utility for DPBloomfilter
	Running Complexity of DPBloomfilter

	Proof for Quantile
	Definition
	Distribution of
	Distribution of conditioned on
	Distribution of

	Privacy guarantees for one coordinate
	Single bit is private
	Privacy guarantees for DPBloomfilter

	Utility analysis
	Accuracy for query of Standard Bloom Filter
	Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query
	Accuracy (compare DPBloomfilter with true-answer) for Query

	Running Time
	Running time for initialization
	Running time for query

	Experiments
	Experiments Setup and Basic Notations
	Experiment Results

	Discussion
	Why Random Response but not Gaussian or Laplace Noise?
	Why Flip Both and ?

	Conclusion

